

Simulator-Based Aircrew Physiological Training Reduced Oxygen Breathing Device (ROBD)

Capt Colin Quinn OVERALL BRIEFING CLASSIFICATION: UNCLASSIFIED

- Aircrew Physiological Training Requirements
- ROBD History and Implementation
- Challenges

Aircrew Physiological Training

- AFI 11-202 Vol I requirement for all aircrew to undergo physiological training
 - Initial SUPT, SUNT, Enlisted Aircrew Tech School
 - Recurrent Every 5 years
- Historically altitude chamber-based
 - Aircrew grouped based on common weapon system
 - TTB Tanker, Transport, Bomber
 - TARF Trainer, Attack, Reconnaissance, Fighter
 - HELO Helicopter Aircrew
 - HAP High Altitude Parachutists Special Ops, PJs
- Human Performance academics with hypoxia in chamber

Hypobaric Chamber Locations

Aircrew Physiological Training

- Course groupings not a best fit for everyone
 - C-130 loadmaster in same class as a B-52 pilot
 - RC-135 Linguist in same class as KC-135 boom
 - F-16 pilot in same class as T-6 IP
- Oxygen panel used in chamber not used in some platforms B-1, B-2, F-22A, F-35
- Risk of Decompression Sickness and Ear/Sinus Blocks
- Costs associated with TDY and man-days for travel to nearest chamber
- Overall loss of realism with chamber-based symptoms vs operational effects of hypoxia

Real-world Application?

- Hypoxia created by mixing less air with nitrogen
 - Decreased percentage of oxygen in mixture vs less pressure
- Recovery via 100% oxygen at Emergency pressure
- Components
 - Mixer, mass flow controllers, O₂ sensor
 - High pressure cylinders (3)
 - Pressure reduction regulators with hoses
 - Fitting for aircrew mask
- Cost approx \$30K/unit
- Annual sustainment: Gas supply, unit calibration, HFT operation
- Based on environmental monitoring technology
 - Mass flow controllers sensitive to .0001 for gas content mixture

ROBD Internals

- 1999 through 2001 proof of concept
 - Met stringent requirements for human use
 - Unanimous approval during tests with F-16 pilots
- USN development via CRADA with contractor
- 2003 brief to ACC/A3 for use in fighter sims
 - Approved for 15 month requirement; bombers added
 - AF/A3O approved
- Since, added to >30 bases
- Deussing, E. C., Artino, A. R., & Folga, R. V. (2011). In-flight hypoxia events in tactical jet aviation: characteristics compared to normobaric training. *Aviation, space, and environmental medicine*, 82(8), 775-781.

ROBD Operations

- Training system-based hypoxia recognition and recovery
- Improves realism of hypoxia experience
 - Conducted while performing mission tasks
 - Operational symptoms effect on flight tasks, SA and CRM
 - Corrective procedures with appropriate oxygen system panel
- Reduces cost to wings for TDY/Man-days
 - Same 5-yr frequency as chamberbased training
 - Maintain 5 year requirement for physiological training

- No threat of DCS/AGE
 - Less response from Flight Medicine
- No more decompression sickness or ear/sinus blocks
- No restriction to flight ops post hypoxia
- No 30-minute 100% O₂ prebreathe time
- Less manning required
 - Inside observers
- Cost of maintenance

- Less space than chamber
- HFT (flight simulator) complement offers more realistic scenario
 - Can change airframe platform based on software
- Gradual change in O₂ delivery mimics slow decompression
- Constant monitoring with pulse oximetry
 - 65% SpO₂ level

- No objective sign recognition (temperature, condensation, pressure demonstrators, cyanosis)
- Extended hours for large classes (15-20 minute/student)

- Which training system is best for training objective
- Helmet/Mask required
- Physiology teams access to simulator/facility
 - Add to secure locations/WTT
 - Non-read in students cannot access
- High pressure bottle storage HAZMAT approval

Questions?

